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Towards Decoding Selective Attention from
Single-Trial EEG Data in Cochlear Implant Users

Waldo Nogueira, Giulio Cosatti, Irina Schierholz, Maria Egger, Bojana Mirkovic, Andreas Büchner

Abstract—Previous results showed that it is possible to decode
an attended speech source from EEG data via the reconstruction
of the speech envelope in normal hearing (NH) listeners. However,
so far it is unknown how the performance of such a decoder is
affected by the decrease in spectral resolution and the electrical
artifacts introduced by a cochlear implant (CI) in users of these
prostheses. NH-listeners and bilateral CI-users participated in
the present study. Speech from two audio books, one uttered by
a male voice and one by a female voice, was presented to NH-
listeners and CI-users. Participants were instructed to attend to
one of the two speech streams presented dichotically while a
96-channel EEG was recorded. Speech envelope reconstruction
from the EEG data was obtained by training decoders using a
regularized least square estimation method. Decoding accuracy
was defined as the percentage of accurately reconstructed trials
for each subject. For NH listeners, the experiment was repeated
using a vocoder to reduce spectral-resolution and to simulate
speech perception with a CI in NH-listeners. The results showed
a decoding accuracy of 80.9% using the original sound files in
NH-listeners. The performance dropped to 73.2% in the vocoder
condition and to 71.5% in the group of CI-users. In sum, although
the accuracy drops when the spectral resolution becomes worse,
the results show the feasibility to decode the attended sound
source in NH-listeners with a vocoder simulation, and even in
CI-users albeit more training data are needed.

Index Terms—Cochlear implant, Selective attention, EEG,
electroencephalography

I. INTRODUCTION

Cochlear implants (CIs) are medical devices that are used
to restore the sense of hearing in people with profound
sensorineural hearing loss or complete deafness. They act as a
kind of artificial cochlea, transforming the acoustic signal into
an electric one, bypassing the damaged structures of the ear
and directly stimulating the auditory nerve (for a review, see
e.g. [33]). Over the past few decades, the CI sound processor
has been extensively developed to further improve speech
intelligibility outcomes (e.g. [34] [35]). Current technology
provides CI users with good speech recognition in quiet
[18] [36], but unsatisfactory speech understanding in more
challenging listening environments with multiple speakers,
background noise or reverberation (i.e. the cocktail party
problem; [4]).

Part of this problem is caused by the limitations in binaural
hearing, including sound localization and speech intelligibility,
experienced by CI users. As a consequence, CI users lose
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the capability of identifying and understanding a particular
speech stream in a noisy environment. The investigation of
neural speech-tracking using electroencephalography (EEG)
and the identification of the attended speaker in multi-talker
scenarios from multi-channel scalp-EEG recordings [24] [27]
have demonstrated that EEG could feasibly inform future
CI algorithms about the listeners focus of attention. This
information would allow CIs for instance to adapt noise
suppression algorithms or to align directional microphones
towards the attended sound source.

One constraint of CIs is the limited spectral information they
deliver. Although only four spectral channels are sufficient to
understand speech in quiet [29], speech perception in more dif-
ficult listening conditions requires a greater number of spectral
channels [30]. The spectral information very likely is limited
by channel interactions occurring when different electrodes
stimulate overlapping populations of neurons (e.g. [12]). The
smeared spectral information may, as a consequence, also
cause smeared cortical responses, which may decrease the
accuracy of detecting the attended speaker from the EEG
signal in a cocktail party type scenario. The smeared spectral
information may, as a consequence, also cause smeared corti-
cal responses, which may decrease the accuracy of detecting
the attended speaker from the EEG signal in a cocktail
party type scenario. Vocoders that smear spectro-temporal
fine structure while keeping the temporal envelope, diminish
top-down attention to differentially process different speech
streams as measured through EEG (Kong et al. 2015) and
magnetoencephalography (MEG; Ding et al. 2013).

CIs produce different electrical artifacts depending upon the
manufacturer, CI sound coding strategies, fitting parameters
and individual maps (e.g. [37] [32]). These artifacts overlay
with cortical responses, making it difficult to isolate one from
the other (e.g. [40] [28]). McLaughlin et. al [22] showed that
recorded EEG signals in CI users consist of a neural response,
a high frequency artifact and a low frequency artifact. The high
frequency artifact can be completely attenuated by low-pass
filtering. The low frequency artifact is related to the stimu-
lation pulses and its shape is similar to that of the acoustic
stimulus envelope. This fact could impair the possibility to
decode selective attention in CI users, as the paradigm requires
ongoing EEG recording while the CI is stimulated. For stimuli
other than continuous speech, it could be shown that the
artifact can be attenuated, obtaining only the actual neural
response (see e.g. [21] [31]). The complexity of continuous
speech with its spectral characteristics, however, makes it
challenging to estimate and remove the artifact. A recent study
investigated the electrical CI artifact in EEG recordings in
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response to continuous speech using a head model. The results
showed that the artifact in response to speech is smaller in
magnitude than the artifact in response to non-speech stimuli,
which is suggested to be related to signal inherent amplitude
modulations [32]. A more recent study has shown that it is
possible to measure neural tracking of speech envelope in
response to ongoing electrical stimulation by creating a sound
coding strategy with gaps in which electrical stimulation is
periodically interrupted. During this stimulation gaps, artefact
free EEG can be sampled and used to train a linear envelope
decoder (e.g. [48]). In summary, the electrical CI artifact
evoked by continuous speech stimuli may overlay with the
cortical responses, to an extent similar to the artifact created
by more simple/brief stimuli.

In the present study, we first investigated the feasibility of
decoding selective attention with dichotic stimulation using
single trial EEG-data in normal hearing (NH) listeners with
reduced spectral resolution of the presented speech signals. In
a subsequent step we evaluated if the attended speech source
can be identified as well from single trial EEG-data in CI users,
where the speech signal is not only degraded, but where also
the electrical artifact of the implant might have an impact on
the decoding accuracy. The first hypothesis of the study is
that spectral smearing may cause a reduction in the accuracy
to detect selective attention. The second hypothesis is that the
introduction of electrical artifact as produced by a CI will limit
detecting the attended speech source in a selective attention
paradigm.

II. METHODS

A. Participants

Participants of the present study included 12 NH listeners
(6 male; mean age: 26, range: 18-33, SD: 4.4 years) and 12
bilateral implanted CI users (7 male; mean age: 60, range:
48-80, SD: 11.0 years). CI users were all good performers,
with a mean performance of 79% in the Freiburg monosyllabic
word test [14] and of 98.5% in the HSM sentence test in
quiet [15]. All CI users had at least 1 year experience with
their devices. NH listeners had age-appropriate hearing with
a hearing loss of less or equal than 10 dB in the frequency
range of 0.25 to 8 kHz. Subjects demographics and additional
information can be obtained in Tables 1 and 2. All subjects
were native German speakers. The Color-Word Interference
Test after Stroop [3] was used as a measure of selective
attention. Speech recognition in noise was assessed using
the HSM in noise and the Göttinger sentence test (GÖSA,
adapting background noise; [16]). Prior to the experiment, all
participants provided written informed consent and the study
was carried out in accordance with the Declaration of Helsinki
principles, approved by the Ethics Committee of the Hannover
Medical School.

B. Stimuli

Following the study of Mirkovic and colleagues [24], partic-
ipants were presented with two German narrations (”A drama
in the air” by Jules Verne and ”Two brothers” by the Grimm
brothers). The story by Jules Verne was narrated by a German

male speaker, the story by the Grimm brothers by a German
female speaker. As in the study by [27] and [24], silent periods
were limited to 0.5s to ensure the listeners could maintain
attention to the correct story and attention was not captured
by the other story. NH listeners were presented with two differ-
ent stimulation conditions (original speech, vocoded speech),
whereas CI users only were presented with original speech.
The vocoder condition in the group of NH listeners was used
to simulate hearing with a reduced spectral resolution, to test
the hypothesis that lack of spectral resolution, as it occurs in
CI users, causes a reduction in the accuracy to detect selective
attention. Note however that a vocoder is obviously not a CI.
Stimuli for NH listeners were delivered via inserted earphones
(3M E-A-RTONE 3A, 50 Ohm). CI users received auditory
stimulation via two audio cables directly attached to the
speech processor. Stimulus presentation was controlled by the
Presentation software (Neurobehavioral System, version 16.5).
In order to adjust the loudness to an individual moderate level
of ∼60-70 dB(A), participants performed a loudness scaling
on a seven-point loudness-rating scale (with 1 equivalent to
very soft and 7 equivalent to extremely loud).

C. Procedure

Subjects were instructed to focus attention to one of the
two concurrent stories while ignoring the other one. The story
to be attended was randomized between participants. During
the task, participants were instructed to keep their eyes open
and to maintain fixation at the front. Stories were presented
in 24 segments of 2 minutes duration each, resulting in a total
task duration of 48 minutes. The whole task was subdivided
into 6 blocks with 4 segments each. For CI subjects, all 6
blocks contained the original speech signal. NH listeners were
presented with 3 blocks of original and 3 blocks of vocoded
speech in alternating order, starting either with the original or
the vocoded condition. Each participant respectively attended
to the same story throughout the experiment, but the side
from which the attended speech stream was presented changed
after each segment to exclude effects of side of presentation.
Before each segment, participants were instructed which side
to attend. The starting side of the attended speech stream
was randomized between participants. Within the breaks, i.e.
after each 2 minutes segment, participants had to answer eight
multiple-choice questions, four related to the attended and four
to the unattended story, with four possible answers each.

D. Vocoder

Vocoder simulations, utilized in this study, were designed
to model both, the processing typically performed in a CI,
and the spread of excitation that may occur in an electrically
stimulated cochlea [26]. The vocoder does not aim at repro-
ducing the exact speech intelligibility of real CI users, but
instead it aims at showing the effect of spectral smearing on
decoding selective attention. Each token was digitally sampled
at 16 kHz. The short-time Fourier transform was computed
with a resolution of 256 bins, and a temporal overlap of 75%.
Next, individual bins were grouped into 22 non-overlapping,
logarithmically spaced analysis channels. The envelope of
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TABLE I
DEMOGRAPHICS OF NH LISTENERS.

ID Sex Age Stroop Stroop GOESA Attended Stimulation
Median T-value (dB SNR for Story Order
Time (s) (age norm) 50%SRT)

NH1 M 33 92 46.6 F Orig/Voc
NH2 M 28 79 50.0 -4.40 M Orig/Voc
NH3 M 24 56 62.0 -5.20 F Orig/Voc
NH4 F 28 68 55.0 -5.30 M Orig/Voc
NH5 M 25 59 60.0 -6.50 M Voc/Orig
NH6 F 28 55 62.5 M Orig/Voc
NH7 M 30 92 46.6 -6.70 M Voc/Orig
NH8 M 18 64 52.0 -5.90 F Voc/Orig
NH9 M 23 79 50.5 -5.20 F Voc/Orig
NH10 F 28 62 58.0 -6.60 F Orig/Voc
NH11 F 23 59 61.0 -5.50 F Orig/Voc
NH12 F 19 65 58.5 -5.70 M Voc/Orig

Note. Stroop = Color-Word Interference Test after Stroop, here: interference subtest. HSM = Hochmair-Schulz-Moser sentence test (+10 dB SNR). GOESA
= Goettinger sentence test in adaptive noise. F = Female. M = Male. Orig = Original speech quality. Voc = Vocoder speech quality.

TABLE II
DEMOGRAPHICS OF CI USERS.

ID Sex Age Etiology Age at Onset of Duration of CI Stroop Stroop HSM GOESA Attended
Profound Deafness Experience Median T-Value in Noise (dB SNR for Story
Deafness (months) Time (age (%) for % SRT)
(years) (Left/Right) (s) norm)

(Left/Right)
CI1 M 80 Acute HL 66/66 5/108 170/67 45.28 F
CI2 M 67 Genetic 59/25 1/266 103/237 70.00 M
CI3 M 66 Unknown 61/61 26/8 29/47 60.00 6.00 F
CI4 F 51 Unknown 37/33 50/57 119/160 59 65.5 85.00 -.90 M
CI5 F 56 Unknown 47/47 14/1 94/107 81 55.8 64.15 5.50 M
CI6 F 49 Unknown 42/42 1/1 72/72 76 55.0 71.70 -.40 M
CI7 M 49 Unknown 16/16 292/185 95/202 90 51.0 89.62 2.10 M
CI8 F 47 Unknown 1/46 503/0 64/6 70 58.0 73.60 10.90 F
CI9 M 68 Unknown 58/47 31/147 92/108 93 56.6 69.81 3.4 F
CI10 M 69 Unknown 65/59 2/63 50/61 72 65.0 94.34 5.90 F
CI11 M 69 Acute HL 59/49 1/142 119/102 100 55.0 80.19 5.50 F
CI12 F 48 Unknown 46/47 1/1 17/7 81 52.8 96.23 9.80 M

Note. Stroop = Color-Word Interference Test after Stroop, here: interference subtest. HSM = Hochmair-Schulz-Moser sentence test (+10 dB SNR). GOESA
= Goettinger sentence test in adaptive noise. F = Female. M = Male. HL = Hearing loss.

each channel was computed on a frame-by-frame basis by
computing the square root of the total energy in the channel.
Noise bands were amplitude modulated based on the envelope
computed in each channel. Noise bands were generated by
filtering white Gaussian noise through a filter bank having the
same center frequencies as the analysis bands used by the
CI processing. The rate of the drop-off of the noise bands
away from the center frequency was set to 25 dB/octave to
simulate the effect of spread of excitation that may occur in
an electrically stimulated cochlea.

E. EEG Recording

Continuous EEG data were recorded in an electromagnet-
ically shielded booth using a BrainAmp System (BrainProd-
ucts GmbH, Gilching, Germany) and 96 Ag/AgCl electrodes
mounted in a customized, infracerebral electrode cap with
an equidistant electrode layout (Easycap GmbH, Herrsching,
Germany). The nose tip was used as reference and the ground
was placed slightly anterior to Fz. Recordings were performed
with a sampling rate of 1000 Hz and an online filter of .02 to
250 Hz. Impedances of the electrodes were maintained below
20 kΩ before data acquisition.

F. Pre-processing

EEG data were pre-processed offline using MATLAB
(Mathworks Inc., Natick, MA) and the MATLAB toolbox
EEGLAB [9], following the procedure of [27] and [24].
Accordingly, raw data were band-pass filtered (2-8 Hz) and
down-sampled (64 Hz), before they were subjected to speech
reconstruction. Speech envelopes of the two narratives were
obtained by applying the Hilbert transform via an FFT on
the respective speech streams, that is, original female, original
male, vocoder female and vocoder male. In a further step, a
low-pass filter (8 Hz) was applied and the signal was similarly
down-sampled to 64 Hz.

G. Speech Reconstruction

The speech reconstruction followed the process described in
[24], [27] and [2]. According to this, the EEG data were used
to reconstruct an estimate of the attended speech signal using
a linear reconstruction model. In a first step, the pre-processed
EEG data were segmented using an EEG rectangular analysis
window of 60 s. A single trial is defined by this window
length. Accordingly, there were 48 trials per CI user and 24
trials per condition (original, vocoder) for the NH listeners.
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Previous research on NH individuals [19] has shown that EEG
activity reflects the envelope of the speech approximately at
time lags from around 100 ms to around 250 ms. However, this
is not known for CI users. Accordingly, the best time-lag was
explored between 0 and 607 ms using a lag window length of
16 ms. This is a non-overlapping sliding window to cover the
range from 0 to 607 ms. The first window covers therefore
from 0 to 15 ms. A window length of 16 ms was chosen, as
it provided the best results when comparing windows of 16,
32 and 64 ms duration.

The neural response at time sample k = 0 . . .K − 1 of the
electrode n = 0 . . . N − 1 is denoted as yn[k]; the spatio-
temporal filter, also termed decoder, at specific time l =
0 . . . L−1 and electrode n is denoted wn,l. The reconstructed
attended signal (same process for the unattended signal) is
estimated as follows:

x̂a,u[k] =

N−1∑
n=0

L−1∑
l=0

wn,lyn[k + ∆ + l], (1)

where x̂a,u[k] denotes the reconstructed attended or unattended
signal at time sample k = 0 . . .K − 1, and ∆ models the
latency or lag. In vector notation would be:

x̂a = WT
aY[k], (2)

x̂u = WT
uY[k]. (3)

In the next subsections the sub-indices a and u are omitted to
simplify the notation and W and Y are defined as:

W = [wT
1 wT

2 . . . wT
N ]T (4)

wn = [wT
n,0 w

T
n,1 . . . wT

n,L−1]T (5)

Y[k] = [y1[k]T y2[k]T . . . yN [k]T ]T (6)

yn[k] = [yn[k+∆] yn[k+∆+1] . . . yn[k+∆+L−1]] (7)

During training, the filter Wa is estimated using least
squares error between xa[k] and x̂a[k]:

JLS(Wa) = E{|xa[k]−WT
aY[k]|2}, (8)

where xa[k] is the Hilbert envelope extracted from the attended
audio signal. To avoid overfitting, regularization is applied,
using the norm of the coefficients

JRLS(Wa) = E{|xa[k]−WT
aY[k]|2}+ λWT

aWa, (9)

with λ being the regularization parameter.
Minimizing the previous Equation by applying the deriva-

tive with respect to the coefficients Wa results in:

WT
a = (RxaY + λI)−1 ·Ryy (10)

where RxaY and RY Y are defined as follows:

RxaY =

K∑
m=0

xa[k]y[k +m], (11)

Fig. 1. Decoding strategy illustration. Data from all electrode channels are
decoded simultaneously to give an estimate of the amplitude envelope of the
input speech stream. The correlation between the reconstructed signals x̂a,u

and both the attended and unattended speech streams xa,u is then calculated
for each trial, following a leave-one-out cross-validation approach.

RY Y =

K∑
m=0

y[k]y[k +m]. (12)

Note that the filter or decoder Wu can be obtained following
the same procedure as used to estimate Wa.

Selective attention is decoded based on the correlation
coefficient between the reconstructed attended and the original
attended Cxax̂a

signal and the correlation coefficient between
the reconstructed attended and the original unattended signal
Cxux̂a for each lag ∆:

Cxax̂a =
E{(xa[k]− µxa[k])(x̂a[k]− µx̂a[k])}

σxa[k]σx̂a[k]
, (13)

Cxux̂a
=
E{(xu[k]− µxu[k])(x̂a[k]− µx̂a[k])}

σxu[k]σx̂a[k]
. (14)

The highest correlation coefficient with the reconstructed
signal, i.e. arg maxxa,xu

(Cxax̂a
, Cxux̂a

) indicates which is the
attended source by the listener. This procedure is repeated for
all trials (i.e. 24 times for NH original speech and vocoder and
48 times for CI users). The accuracy for detecting the attended
speaker is obtained as the number of times that the signal is
correctly decoded divided by the total number of trials. Note
that the unattended decoder can also be used to decode both
the attended and the unattended speech stream, however, it
typically delivers lower accuracies than the attended decoder
[27].

A classical leave-one-out cross-validation approach was
used to train and test the decoder. Each test-trial was evaluated
using the (averaged) decoder obtained from the average of
the decoders trained on every other trial. Figure 1 shows an
illustration of the decoding process.

III. RESULTS

A. Behavioral Data

Overall, behavioral data from the questionnaire show that
participants followed the instructions and attended the correct
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Fig. 2. Average decoding accuracies and standard deviation of the mean across
subjects for original and vocoded speech using 24 minutes of recording in NH
listeners, or 24 and 48 minutes in CI users (CI 24 and CI 48). Accuracy values
were obtained using the attended decoder. For each condition, the results
were obtained with a long lag window of 607 ms or averaging the decoding
accuracy obtained with short non-overlapping lag windows of 16 ms covering
the range from 0 to 607 ms.

story. NH listeners achieved a mean of 85 % (standard error of
mean; SEM: 3%) correctly answered questions when listening
to the original speech condition. For the vocoded speech
condition, the performance dropped to 79% (SEM: 4%),
which is still significant above chance level. The difference in
performance for the original and vocoded speech condition in
NH listeners was not statistically significant. CI users achieved
a mean of 56% (SEM: 5%) correctly answered questions,
which was also significant above chance level. Accordingly,
NH listeners performed significantly better than CI users even
in the vocoded speech condition (t(22) = -3.84, p = 0.001).
Accuracy for the questions related to the unattended story
was below chance level in any of the groups, indicating that
participants were only guessing the answers to the unattended
story and did not follow it.

B. Overall Decoding Accuracy

Average decoding accuracies across NH subjects in the
original and the vocoder condition and across CI users are
shown in Figure 2 using the attended decoder with a long lag
window of 607 ms and with a short lag window of 16 ms.
For the long window only one lag was computed covering the
range from 0 to 607 ms. For the short window, the accuracy
results were averaged for each decoder covering the range
from 0 to 607 ms in windows of 16 ms. The regularization
parameter λ was set to 0.001 as it gave the best accuracy
results for the NH, vocoder and CI group. Figure 9 in section
B of the Appendix presents the accuracy results for different
values of the regularization parameter λ.

Figure 3 presents the accuracy values across lags using 16
ms window for NH, vocoder and CI users. The left panels
present the accuracy values obtained with the attended decoder
predicting the attended speech, whereas the right panels show
the accuracy values using the unattended decoder to predict
the unattended speech. Chance level (29.2% - 70.8%) was
determined using a binomial test at 5% significance level.
Figure 3 shows a maximum decoding accuracy of 80.9% (lag
250-266 ms), 73.2% (lag 218-234 ms) and 71.5% (lag 410-426
ms) for the NH listeners in the original and vocoder condition,

Fig. 3. Average decoding accuracies and standard deviation of the mean
for original and vocoded speech using 48 minutes in NH listeners, 24 and
48 minutes in CI users (CI 24 and CI 48). Accuracy values obtained using
the attended decoder, predicting the attended speech are shown in the left
part in light color, while accuracy values obtained using the unattended
decoder, predicting the unattended speech are shown in the right part in
darker color. Note that the accuracy values obtained by predicting the attended
or unattended signal with a particular decoder (attended or unattended) are
complementary. The correlation coefficients for the CI 48 and the CI 24
minutes condition were very similar.

and the CI 24 group, respectively. The peak accuracy for
CI users was just below chance level, whereas the accuracy
for NH listeners in the original and vocoder condition was
significantly above chance level. For both, the original and
vocoder condition, the highest accuracy was obtained at time
lags ranging from 256 to 272 ms. These results are consistent
with previous works from [24] and [27]. In contrast to the
NH listeners, CI users showed two main peaks. A first one at
the same time lag ranging from 256 to 272 ms and a second
peak at a time lag ranging from 416 to 432 ms. As only
the attended decoder achieved results above chance level, the
unattended decoder was excluded from the statistical analysis.
For the attended decoder a repeated measures analysis of vari-
ance (ANOVA) with the within-subject factors Lag (∆) and
Condition (original, vocoder) revealed a significant main effect
of Lag (F(34,374)=9.69; p<0.001) and a marginal significant
Lag x Condition interaction (F(34,374)=1.44; p=0.058). The
main effect Condition was not significant. From these results,
one could conclude that decreasing spectral resolution with a
vocoder may cause a drop in decoding selective attention for
certain lags.

A mixed ANOVA with within-subject factor Lag (∆) and
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the between-subject factor Group (original, CI-24) confirmed
a significant main effect of Lag (F(34,748)=9.76; p<0.001)
and a significant Lag x Group interaction (F(34,748)=2.37;
p<0.001), but no significant main effect of Group. The inter-
action effect means that for specific lags the decoding accuracy
of each group was significantly different from each other.

An additional mixed ANOVA with within-subject factor Lag
(∆) and the between-subject factor Group (vocoder, CI-24)
confirmed a significant main effect of Lag (F(34,748)=7.00;
p<0.001) and a significant Lag x Group interaction
(F(34,748)=1.93; p=0.001), but no significant main effect of
Group. The interaction effect means that for specific lags the
decoding accuracy between vocoder and CI was significantly
different from each other.

From these results, one could conclude that the drop in
accuracy observed in the CI group may be caused by the
lack of spectral resolution known from the vocoder condition,
however one cannot yet exclude that the electrical artifact
introduced by the CI also decreases the accuracy of detecting
selective attention.

C. Effect of Amount of EEG Recording Time in CI Users

Selective attention accuracy in CI users was computed for
two different amounts of recording time: 24 and 48 minutes.
The two bottom panel rows in Figure 3 show the mean
accuracy across lags for the CI group when training the
decoder with either 24 or 48 minutes. The left panel presents
the mean accuracy values obtained with the attended decoder
predicting the attended speech, whereas the right panel shows
the accuracy values using the unattended decoder to predict the
unattended speech. A mixed ANOVA with factors Lag (∆) and
Condition (24-minutes decoder, 48-mintues decoder) showed a
significant main effect of Lag (F(34,374)=4.22; p<0.001), no
significant effect of Condition and no significant interaction.
This suggests that increasing the amount of recording time
beyond 24 minutes does not improve decoding accuracy in CI
users. However, training the decoder with 48 minutes results
in a lower chance level than with 24 minutes of training.
Accordingly, the results, in contrast to the 24 minutes con-
dition, become significant above chance level. These results
are consistent with results observed in NH listeners where
an increase in recording time beyond 24 minutes did not
significantly improve selective attention accuracy [24]. All in
all, the results provide some evidence that selective attention
decoding in CI users by means of EEG is feasible, given a
sufficient recording time.

IV. FURTHER ANALYSIS

A. Cortical Activity and Electrical Artifact: Analysis of Cor-
relation Coefficients

It is important to analyze the influence of the electrical
artifact created by the CI in the EEG recording. In theory the
artifact should be related to some extent to the incoming sound,
as the CI transmits envelope information in each electrode.
Therefore, it is hypothesized that the EEG recordings from
CI users may be stronger correlated with the incoming sound
than for NH listeners in the original or the vocoder condition.

Fig. 4. Correlation coefficients for NH listeners in the original (blue), and
vocoder (red) condition; and for the CI users (green). In each subplot lighter
colors refer to the correlation coefficients for the attended speech and darker
colors refer to the correlation coefficients for the unattended speech. The thick
lines represent the mean values and the shaded areas the standard deviation
across subjects.

This hypothesis was investigated by comparing the correlation
coefficients between the original and the reconstructed sound
using the attended (Cxax̂a

and Cxux̂a
; Left panels of Figure 4)

and the unattended decoder (Cxux̂u and Cxax̂u ; Right panels
of Figure 4) for each group (original, vocoder, CI). Correlation
coefficients were estimated for each time lag ∆ by averaging
them across subjects.

Figure 4 shows that the difference in correlation coefficient
between the attended and the unattended signals is larger for
the attended than for the unattended decoder. In NH listeners
(original and vocoder condition) the highest correlation values
are obtained between 200 and 300 ms, while CI subjects
obtain the highest correlation coefficients between around 100
and 200 ms. However, for CI users the largest difference in
correlation values between the attended and the unattended
speech is achieved for lags ranging from 250 to 350 ms
and from 400 to 450 ms, which correspond to the highest
accuracies reported in Figure 3. The large correlation values
observed in CI users compared to those of the NH listeners in
the original and the vocoder conditions may indicate that the
EEG recordings contain artifacts related to the envelope of the
incoming speech. If the EEG signal contains mainly artifact
related to the incoming sound, the decoder is in practice
conducting an autocorrelation of the speech envelope. The
known rapid decrease in the speech autocorrelation explains
the decrease in the correlation coefficient with increasing lag
after around 200 ms shown in Figure 4.

To test the previous hypothesis, the decoder was trained
with a simulated EEG signal where the 96 electrode recordings
were replaced by the sum of the two original speech sounds
processed by a CI (Figure 5). This situation models a worst
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Fig. 5. Block diagram of the electrical artifact model and the sound coding
strategy used in the left and right CI sound processor.

case scenario where full artifact caused by both CIs reaches
all 96 EEG electrodes simultaneously. The same sound coding
strategy implemented in the vocoder was used in this model.
Note that only the latency introduced by the sound coding
strategy, i.e. the algorithmic latency, is considered without
modeling the latency introduced by the CI electronics. The
sound coding strategy model was used to estimate the current
delivered to each electrode over time for the attended and the
unattended speech signal. For each EEG electrode e located
at position xe, ye, ze, the voltage was estimated using the
analytical solution for the voltage in a medium due to current
Ii applied on a CI electrode i located at position xi, yi, zi:

Ve(xe, ye, ze) =
Ii

4πσ
√

(xi − xe)2 + (yi − ye)2 + (zi − ze)2
(15)

It was assumed that the system was linear and therefore the
voltage created by each CI electrode i on each side (left and
right) was added up to each other to estimate the electrical
artifact in the EEG. The conductivity of the brain was set
to σ=0.33 S/m [41]. The simulated EEG signal was then
used to obtain the attended decoder and to reconstruct the
original signals. Figure 6 presents the accuracy values and the
corresponding correlation coefficients for time lags between 0
and 607 ms for the attended decoder simulating full artifact
in the EEG recording. Figure 6a shows that the decoding
accuracy never exceeds the chance level if the EEG recording
only contains artifact as simulated by the model. Moreover,
Figure 6b shows that the correlation coefficients between the
reconstructed speech and the attended or the unattended speech
are almost identical (both curves show a complete overlap).
The correlation coefficients remain almost constant up to a lag
of 80 ms, but decay very fast thereafter, reaching a value of
around 0.1 at 150 ms. Beyond these time lags, the correlation
coefficient decay slows down, reaching a value of around
0 at approximately 600 ms, i.e. here the reconstructed and
the original attended or unattended speech signals become
uncorrelated. Compared to the strong correlation coefficient
decay observed in the model results, the correlation coefficient
in CI users decayed much slower, specially for time lags of
250 ms (Figure 4). This slower decay may be explained by the
cortical activity overlaid with the electrical artifact. It is also

Lags ∆   [ms]

Lags ∆   [ms]

Fig. 6. a) Decoding accuracy using the attended decoder trained with a
simulated EEG signal containing only artifact. b) Correlation coefficients for
the attended speech (light blue) and the unattended speech (dark blue) using
the attended decoder. The shaded area denotes the standard deviation across
trials (48 trials for 48 minutes) and the dark line shows the mean value. Note,
the correlation coefficients for the attended and the unattended speech sounds
overlap. Both, correlation coefficients for the attended and the unattended
speech sounds drop rapidly with increasing lag, reaching a value of 0.1 after
around 150 ms.

interesting to note that the results in NH and CI users show
an increased difference between the correlation coefficients
for the attended and the unattended speech for time lags of
200-250 ms (Figure 4). In the modeled results, however, no
difference in correlation coefficients between the attended and
the unattended speech was observed, as both coefficients are
fully contaminated by the artifact and the cortical activity is
not modeled. Based on the present analysis, we suggest that
selective attention in CI users can be successfully decoded
from cortical activity for lags beyond around 200-250 ms.

B. Electrical Artifact

To give more insight about the CI electrical artifact, the
top panels of Figure 7 present the power spectral density for
each EEG electrode for a single trial (1 minute recording
time) from 0 Hz to 12 Hz for the NH (original speech)
and for the CI listener groups. For both groups, it can be
observed that the power spectral density is dominated by
artifacts caused by eye movements. On the bottom panels the
power spectral density is shown after applying independent
component analysis (ICA) to remove eye artifacts. It can be
observed that the power spectral density for the CI group is
larger than for the NH group, probably because it contains CI
electrical artifact. Moreover, the power spectral density in CI
users shows larger variability than for the NH listeners. The
topographical maps above the power spectral density curves
demonstrate that indeed for the CI group, the EEG electrodes
with locations close to the CI present much higher amplitude
than the other EEG electrodes.

V. DISCUSSION

This study investigated whether selective attention can be
successfully decoded by means of single-trial EEG data in CI
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Fig. 7. Power spectral density of each EEG electrode across frequency. The
colored curves present the power spectral density averaged across subjects
for each EEG electrode. The topographical maps present the power spectral
density across head location. The left panels present the results for NH
subjects using original speech, whereas the right panels present the results
for CI users. On the top panels no artefact removal is applied and in the
topographical maps one can observe a large power in the electrodes located
on the eyes. The topographical maps after applying independent component
analysis (ICA) are presented on the bottom panels to improve the analysis
with reduced eye artefact.

users. Two main obstacles were expected for this task. First,
the lack of spectral resolution in CI users and second, the elec-
trical artifact introduced by the CI in the EEG signal, which
may cover the true cortical activity. Results of the current
study demonstrate that selective attention can be successfully
decoded in CI users although the accuracy is lower than in NH
subjects. The results provided evidence that the lack of spectral
resolution has a negative effect on the decoding accuracy of
selective attention, but also the artefact might likely contribute
to the observed decrease in decoding accuracy.

The effect of a reduced spectral resolution without the
additional effect of an electrical artifact on the decoding
accuracy was investigated in NH subjects listening to both,
original and vocoded sounds. Decoding accuracy dropped
from 80.9% in the original condition to 73.2% in the vocoded
condition. Previous studies have shown that a degradation
of frequency information, even if it does not affect speech
intelligibility [42], plays an important role in stream separation
and strongly effects top-down modulation of neural activity
(e.g. [11] [46] [47]). This fact could explain the trend towards
poorer decoding accuracies for NH listeners in the vocoder
condition compared to the original speech condition, although
the vocoder also causes a decrease in speech performance. The
mean decoding accuracy observed for NH listeners (80.9%)
was well above chance level, but slightly below the accuracies
reported by previous studies (88-89%; [24] [27]). This small
difference may be caused by two reasons. First, the amount of
training time for NH listeners in the current study was only 24
minutes compared to the 30 or 48 minutes used by [24] and
[27], respectively. Second, these previous studies presented the
two stories always on the same side to each subject, whereas
the current study alternated the presentation side.

To investigate the combined effect of reduced spectral
resolution and the electrical artifact of the CI on decoding
selective attention, we likewise investigated a group of CI

users. The decoding accuracy in this population (71.5%) was
similar to the one obtained for NH listeners in the vocoder
condition (73.2%). To evaluate the effect of amount of training
data, the decoding accuracy in CI users was determined for
two different recording times: 24 and 48 minutes. Increasing
the amount of recording time beyond 24 minutes did not sig-
nificantly improve the absolute decoding accuracy. It however
resulted in a lower chance level, so that the decoding accuracy
for 48 minutes became significant above chance level. The
current results provide first evidence that selective attention
can be successfully decoded in CI users, even if an electrical
artifact is present. The fact that the decoding accuracies for NH
subjects in the vocoder condition and the ones of the CI users
were similar, further suggests that rather spectral smearing and
consequently worse speech understanding but not the electrical
artifact might be a reason for the decrease in decoding
accuracy. No significant correlation between behavioral speech
performance and decoding accuracy was found.

Previous studies on cortical responses to attended continu-
ous speech in NH listeners have reported peak latencies or lags
of the highest decoding accuracy ranging from short delays
from 100 to 150 ms ([8], [17]) to longer delays from 150 to
300 ms (e.g. [1], [27], [24]). NH listeners (original and vocoder
condition) in the present study showed the maximum decoding
accuracy at lags from 220 to 270 ms, which is consistent with
these previous findings. For the CI users, however, two main
peaks for the decoding accuracy were observed. The first one
occurring at a time lag from 256 to 272 ms and a second
one occurring at a time lag from 416 to 432 ms. In summary,
the uracy in CI users is lower and delayed (second peak) in
comparison to NH listeners (original and vocoder condition).

Although there is no clear evidence that different peaks
may relate to word processing (e.g. [51] some direct efforts
made an attempt to relate EEG/MEG to word and conceptual
processing that go beyond envelope measures (e.g. [50]). In
the present work it has been shown that CI users present two
main peaks, the first one at a time lag ranging from 256
to 272 ms and the second at a time lag ranging from 416
to 432 ms. Both peaks also seem to be present in NH, but
are just not as prominent. However, in NH the first peak is
always higher than the second one in both the original and
the vocoder conditions. This observation is in agreement with
the results reported by [24] which suggested that the first peak
may be related to word processing while the second one may
be related to sentence/conceptual processing. In our results, we
observed that in NH the second peak is lower in vocoded than
in the original speech. Interestingly, the double peak structure
is more prominent in the CI group. In CIs it is possible that the
first peak is lower than in NH listeners because of the spectral
degradation they receive, but the second peak is still higher
since the understanding is almost as good as in NH listeners
(note that the accuracy, while low is still just as high as in NH
at this lag). Also, since the CI users are more used to spectral
degradation they may be more successful in dealing with it
than the NH group in the vocoder condition.

The large correlation between the EEG reconstructed and
the original speech observed in CI users compared to the
correlation for NH listeners in both, the original and vocoder
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condition may indicate that the EEG recordings contain artifact
related to the envelope of the incoming speech. However, the
correlation drops rapidly with increasing lags. This decrease
with lag may be expected, as the autocorrelation of speech
decreases rapidly. If the EEG signal contains mainly artifact
related to the incoming sound, the decoder is in practice
conducting a correlation of the signal with itself. This effect
was demonstrated using a decoder trained with simulated EEG
signals where the 96 electrode recordings were replaced by the
sum of the two original speech sounds used in the selective
attention experiment. Results in this simulation demonstrate
that the decay in correlation coefficient with increasing lag was
faster than the decay observed in real EEG recordings in CI
subjects. From this analysis, we suggest that the effect of the
artifact on the correlation coefficient used to detect selective
attention is small in comparison to the effect of the cortical
response for the range of lags (200-250 ms) shown to provide
highest accuracy in NH subjects.

Previous work has shown that the ability to pay auditory
selective attention is not predicted by age (e.g. [43]), although
care has to be taken when mixing data from different age
populations ([49]). Section A in the Appendix presents results
comparing selective attention decoding in the same young
group of NH listeners with an elderly group of normal hearing
listeners. The decoding accuracy in both groups was similar
and in both cases the accuracy was higher than the accuracy
obtained by normal hearing listeners using the vocoder or by
CI users.

The selective attention decoding process is a very promising
method to improve speech intelligibility in hearing impaired
people. This method could be used to steer signal processing
algorithms (such as beamformers, noise reduction algorithms)
and it could be combined with source separation algorithms
[26]. However, many other aspects must be investigated before
being able to use these methods in daily life devices. Although
the effect of the CI artifact in decoding selective attention
seems to be smaller than expected, there is still need to further
investigate its effects and keep it as minimal as possible.
For example, low stimulation rate sound coding strategies or
high EEG sampling rates could be used to minimize the CI
artifact [48]. ICA has been suggested as a successful method
for artifact removal [40] [41]. However, this method requires
manual and subjective decisions and is a time-consuming
technique. Moreover, the current study has used a very simple
paradigm to simulate the cocktail party effect. The results
presented here are therefore not easily applicable to daily life
situations and more realistic sound environments need to be
explored to better understand the selective attention processes
in both NH and CI users [7]. It is important to consider
that selective attention decoding was performed using a high-
density EEG consisting of 96 electrodes. New technologies
with a minimized number of EEG electrodes could be used to
overcome the lack of portability and the long set-up process
of the EEG cap. The potential use of an around the ear device
(cEEGrid, [6] [25]), an in the ear canal device [5] [10] or of
a device that measures cortical potentials through the CI via
intracochlear electrodes [25] [23] or of additional electrodes
implanted during the CI surgical procedure offers promising

methods that however need further research to reach a more
complete portable system.

CONCLUSION

This work has shown that it is possible to decode selective
attention in CI users. Two main limitations were foreseen, on
the one hand the worse spectral resolution obtained by CI
users and on the other hand the electrical artifact introduced
by CIs in the recorded EEG. A reduction in spectral resolution
modeled by presenting vocoded sounds to NH listeners caused
a decrease in decoding accuracy. The electrical artifact became
less relevant to decode selective attention with increasing the
delay or lag in the recorded EEG signal. This fact enables
decoding selective attention in CI users if sufficient training
data is available.
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APPENDIX

A. Effect of age in decoding selective attention

The NH and the CI group that participated in current the
study were not balanced in age (NH mean age: 25.58 years
vs CI mean age: 59.9167). A previous study recommended
to be careful combining data from different age populations
[49]. For this reason, the selective attention decoding was
repeated following the same procedure in a new group of 4
NH listeners with a mean age of 75 years. Figure 8 presents
decoding accuracy for both groups of NH listeners. From these

Fig. 8. Decoding accuracy for two groups of NH listeners with different mean
ages across lags.

pilot results it can be seen that there is no large difference in
decoding selective attention between both groups differing in
age. These results are in agreement with previous works in
which selective attention ability is not predicted by age [43].

B. Effect of regularization parameter

The regularization parameter λ can be used to avoid overfit-
ting in the least squares optimization method used to decode
selective attention. The exact value of λ has an influence in the
overall accuray and needs to be optimized. Figure 9 presents
the effect of the λ on decoding accuracy. The λ value of 0.001
obtained the highest accuracy for all groups.

Fig. 9. Decoding accuracy for the normal hearing (NH) listeners using
original or vocoder sounds and CI users across lags for different values of
the regularization parameter. For the CI group we provide the analysis using
48 minutes.
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