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Abstract 

The aim of this study is to investigate whether a 

source separation algorithm based on a deep recurrent 

neural network (DRNN) can provide a speech perception 

benefit for cochlear implant users when speech signals 

are mixed with another competing voice. 

The DRNN is based on an existing architecture that is 

used in combination with an extra masking layer for 

optimization. The approach has been evaluated using the 

HSM sentence test (male voice) mixed with a competing 

voice (female voice) for a monaural speech separation 

task. Two DRNNs with two levels of complexity have 

been used.  The algorithms have been evaluated in 8 

normal hearing listeners using a Vocoder and in 3 CI 

users. Both DRNNs show a large and significant 

improvement in speech intelligibility using Vocoded 

speech. Preliminary results in 3 CI users seem to confirm 

the improvement observed using Vocoded simulations.  

1 Introduction 

A cochlear implant (CI) is an electronic device that is 

surgically implanted into the inner ear and can restore the 

sense of hearing of a profoundly deaf person. CI users 

need significantly higher signal-to-noise ratios (SNRs) to 

achieve the same speech intelligibility as normal-hearing 

listeners [1]. For this reason, speech enhancement 

techniques have emerged to improve the SNR in noisy 

acoustic conditions. Although many successful single [2] 

and multichannel noise reduction algorithms exist [3] and 

all implants have some sound coding strategies 

implemented in their processors, noise reduction remains 

one of the big challenges of the acoustic processing in 

CIs. All algorithms and techniques have a good 

performance when the noise is coherent. However, their 

performance is reduced when the CI user is in a noisy 

environment with many incoherent noise sources, in 

reverberant rooms or in the presence of more interfering 

speech sources [3]. 

For example, Beamforming algorithms are spatial 

filters able to enhance speech from a target direction in 

the presence of interfering speech sources from different 

directions [4]. Their implementation however requires 

several microphones. If only one microphone is available, 

source separation algorithms can be used to solve the 

issue of non-stationary noises such as speech 

interference. Source separation algorithms have been 

applied to separate musical instruments and to separate 

speech from interferences. Several approaches have been 

proposed to address the monaural source separation 

problem. The widely used non-negative matrix 

factorization (NMF) [5] or, more recently deep recurrent 

neural networks (DRNNs) [6]. 

Current results from source separation algorithms are 

not able to outperform human capabilities. For CI users, 

given their large limitations in perceiving spectral and 

temporal characteristics of sound, the potential artifacts 

introduced by monaural source separation algorithms 

may not be perceived and therefore, these algorithms are 

promising to improve speech performance in the presence 

of a competing voice. So far, no evaluation of source 

separation algorithms has been performed in CIs users. 

In this work, we study a state-of-the-art DRNN in the 

context of CIs. We propose to evaluate the performance 

in normal hearing listeners and CI users. For the 

evaluation in normal hearing (NH) listeners we use a 

Vocoder to simulate performance of CI users. The 

Vocoder reduces spectral information into a limited 

number of channels to reduce speech intelligibility to a 

similar degree as in CI users [10]. It needs to be 

emphasized that no attempt is made to match the degree 

of smearing to specific CI subjects and also that the 

sound produced by the Vocoder does not correspond to 

the sound a CI user perceives. 

The goal of this manuscript is first to propose a CI 

sound coding strategy architecture incorporating a 

DRNN. The second goal is to show whether a DRNN can 

improve speech intelligibility for CI users. The third goal 

of this manuscript is to show whether the quality of the 

separation by the DRNN is affected when the complexity 

and latency is reduced to satisfy the needs of a CI speech 

processor. 

The organization of the manuscript is as follows: 

Section 2 presents the methods section giving a summary 

of the DRNN used and its implementation. Section 3 

presents the evaluation of the DRNNs using objective 

measures, and subjective speech intelligibility tests in 

normal hearing listeners and CI users. We conclude the 

manuscript in Section 4. 

2 Methods 

The source separation algorithm has been 

incorporated in a CI sound coding strategy as shown 

(Figure 1).  

 

 

Figure 1: Sound coding strategy incorporating a DRNN. 



2.1 Sound Coding Strategy 

An audio signal containing a target speech and some 

other interference is captured by the CI microphone. The 

signal from the microphone is digitized with a sampling 

frequency (FS) of around 16 kHz and sent through an 

adaptive gain control (AGC). Next, a filter bank 

implemented as a fast Fourier transform (FFT) is applied 

to the compressed signal. A typical buffer size for the 

FFT is 128 or 256 samples weighted by an analysis 

window such as the Hanning window.  Next a DRNN is 

used to separate the target speech signal from the 

interfering speech signal. The output of the DRNN is the 

spectrum of the target signal and the interferer signal. 

Next, a mask is applied so that the sum of both predicted 

signals is equal to the original mixture. After that, an 

estimation of the desired envelope is calculated for each 

spectral band of the target speech signal. The envelopes 

are obtained by computing the magnitude of the complex 

FFT bins. Each band is allocated to one electrode after 

non linear compression (mapping). For each frame of the 

audio signal 𝑀 channels with the highest amplitudes are 

stimulated. Some sound coding strategies perform a 

selection of the bands for stimulation right after the 

envelope detector, the so called NofM strategies [7]. 

Typical values for M and N are 22 and 8 respectively.  

In the proposed architecture the DRNN is 

incorporated right after the FFT. By doing so it is 

possible to use the same DRNN for CI users having 

different number of electrodes activated or different 

processing stages after the FFT such as noise reduction 

algorithms, multichannel compressors or NofM selection 

algorithms.  

2.2 The Deep Recurrent Neural Network  

In this section we summarize the implementation of 

the DRNN proposed by [6]. The DRNN learns the 

optimal hidden representations to reconstruct the target 

spectrum by applying a generated soft mask to the 

original source mixture. The general architecture is based 

on Figure 2. 

As mentioned before, the incoming sound from the 

microphone is segmented into frames and transformed 

into the frequency domain using the FFT by the CI sound 

processor. Each spectral frame of the spectrum is denoted 

by 𝑿n. At frame n, the training input 𝑿n of the network is 

the concatenation of spectral features. 

The output predictions, 𝒀1n and 𝒀2n of the network 

are the spectra of different sources. In a DRNN, the 𝑙𝑡ℎ 

hidden layer, 𝑙 > 1, is calculated based on the current 

input Xn and the hidden activation from the previous time 

step ℎ𝑙(𝑿𝑛−1), 

ℎ𝑙(𝑿𝑛) = 𝜎 (𝑾𝑙ℎ𝑙−1(𝑿𝑛) + 𝒃𝑙 +𝑾𝑟𝑒𝑐
𝑙ℎ𝑙(𝑿𝑛−1)), 

where 𝑾𝑙 and 𝑾𝑟𝑒𝑐
𝑙 are the weight matrices for the 

feed forward and the recurrent connections, and 𝒃𝑙  is the 

bias vector. 

 

 

Figure 2: Scheme of a recurrent neural network adapted 

from [3]. 

The first hidden layer is computed as ℎ1(𝑿𝑛) =
𝜎(𝑾1𝑿𝑛 + 𝒃1). We used rectified linear unit [15].  The 

output layer is a linear layer and is computed as: 

𝒀̅𝑛 = 𝑾𝑙ℎ𝑙−1(𝑿𝑛) + 𝒃, 

where 𝒀̅n is the concatenation of two predicted 

sources 𝒀̅1nand 𝒀̅2n. 

Directly training the previously mentioned networks 

does not have the constraint that the sum of the prediction 

results is equal to the original mixture.  As proposed by 

[5] a soft time-frequency mask attached to the output 

layer is used to jointly optimize the network. 

The DRNN was trained using a discriminative cost 

function [5] with a discriminative gamma factor of 0.05, 

together with the mean squared error (MSE) cost 

function.  

Such discriminative cost decreases the similarity 

between the prediction and the targets of other sources 

while the MSE cost increases the similarity between the 

target and the prediction of the same source. The model is 

optimized by back-propagating the gradients through 

time with respect to the training objectives. In our case, 

1200 iterations are used to obtain the optimum minima. 

The limited-memory Broyden-Fletcher-Goldfarb-Shanno 

(L-BFGS) algorithm [11] is used to train the models from 

a random initialization. 

2.3 Implementation 

Two different DRNNs were implemented. The first 

one (DRNN1) uses one single hidden layer with 16 

hidden units.  The second one (DRNN2) uses 3 layers 

with 1000 hidden units, where only the third layer is 

recurrent. The temporal connection of the recurrence was 

set to two for both networks. The input features are the 

magnitude spectrum of the incoming sound. The spectral 

representation is extracted using a 1024-point short time 

Fourier transform (STFT) with 50% overlap. In its 



standard configuration a 32 ms Hamming window with a 

50% overlap was used.  

The number of units in the input and output layers is 

given by the dimensionality of the input feature set and 

the output gains. In its standard configuration the number 

of input features is set to half the length of the FFT, 

therefore the number of input units is 511 and the number 

of output units is 1022. 

An Intel Xeon CPU E5-1620@3.5 GHz with 16 GB 

RAM and a NVIDIA Tesla K40 was used to train the 

models. The models were implemented in Matlab and the 

training of each model in its standard configuration took 

around 7.5 hours. Once the model was trained the whole 

HSM sentence test [6] mixed with other HSM sentences 

uttered by the female speaker, was processed to separate 

the male from the female voice. For each network 

architecture, the whole HSM sentence test was processed. 

3 Results 

3.1 Objective evaluation 

The proposed approaches were evaluated for 

monaural speech separation using the HSM sentence test. 

Eight HSM sentences from a male and a female speaker, 

respectively, were used for training. The male and female 

voices were mixed at a speech to speech interference ratio 

(SSIR) of 0 dB. An additional sentence for the male and 

for the female were used as the development set. All 

objective tests presented in the following sections were 

obtained processing 46 additional sentences for the male 

and the female speaker not included in the training or the 

development set. 

As proposed by [5], in order to increase the variety of 

training samples, the male voice signals were circularly 

shifted in the time domain and mixed with female 

utterances. In total 18 minutes of male voice and female 

voice were used to train the DRNN. 

The source separation evaluation was measured using 

the source to interference ratio (SIR), the source to 

artifacts ratio (SAR), and the source to distortion ratio 

(SDR), defined in the BSS-EVAL metrics [9]. The larger 

are the outcomes of these measures, the better the quality 

of the separation. Figure 3 presents the objective 

evaluation comparing the DRNN1 with the DRNN2. 

Although the complexity of the DRNN2 was much higher 

than the DRNN1 the performance achieved by both 

networks was similar. 

 

Figure 3: Effect of DRNN architecture on objective 

measures (SDR, SIR and SAR). 

3.2 Subjective Evaluation 

Speech intelligibility was measured by means of the 

HSM sentence test [8]. The standard test is uttered by a 

male voice. The sentences were mixed with other HSM 

sentences uttered by a female voice. 2 lists or 3 lists of 20 

sentences for each condition (Original, DRNN1 and 

DRNN2) were presented to NH or CI users respectively.  

For the subjective evaluation, the output of the DRNN 

after applying the soft mask was used to separate the 

spectrogram of the target from the interferers. Next the 

signals were converted back into the time domain using 

an inverse FFT. The target signal was then processed by 

the CI speech processor or by a Vocoder for 

experimentation in NH listeners. 

The speech test was presented using a loudspeaker at 

a 1 m distance from the study participant. An M-Audio 

mobile Pre sound card was used for that purpose 

connected to a Genelec 8240A Loudspeaker. The test was 

conducted in a sound treated room at a presentation level 

of 60 dB(A) SPL. 

3.2.1 Evaluation in NH listeners  

The described algorithms were evaluated in a group 

of NH listeners using a Vocoder.  The Vocoder simulated 

the typical processing performed by a CI and the spread 

of excitation that may occur in the electrically stimulated 

cochlea.  

Each token was digitally sampled at 16 kHz. A 128-

short-time FFT was computed with a 75% overlap. Next, 

the FFT bins were grouped into 22 non-overlapping, 

logarithmically spaced bands. The envelope of each band 

was computed taking the square root of the total energy 

in the band.  The output of each band was used to 

modulate a noise band. The noise band was generated 

similarly synthesized in the frequency domain [10]. The 

center frequency of the noise band was identical to the 

center frequency of the corresponding frequency band. 

The noise band was configured to decay at a rate of 25 

dB/octave to simulate the effect of spread of excitation. 

8 NH listeners participated in the evaluation. Figure 4 

presents the individual and averaged speech performance 

scores in % of correct words. 

 

Figure 4: Speech intelligibility scores using the HSM 

sentence test with a competing female voice using a 

Vocoder. The SSIR was 0 dB for all participants. 
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The results show a significant improvement in speech 

intelligibility for the DRNN1 and DRNN2 with respect to 

the baseline condition. No significant difference was 

observed between the DRNN1 and the DRNN2 

conditions. 

3.2.2 Evaluation in CI users 

Three CI users participated in the evaluation of the 

DRNNs (Table 1). The three study participants were 

bilateral CI users, only the best CI side was tested. 

 

Table 1: Subject Details 

Figure 5 presents the speech intelligibility scores obtained 

by the 3 CI users.  

 

Figure 5: Speech intelligibility scores using the HSM 

sentence test mixed with HSM sentences uttered by a 

female voice. The target voice was the male voice. The 

SSIR was 0 dB or 10 dB as indicated in the labels on top 

of the bars. 

The results show that subjects obtained an 

improvement of 50% in speech intelligibility using the 

DRNN with respect to the non-processed condition. 

3.3 Optimization for Cochlear Implants 

The proposed DRNN shows promising results to be 

integrated in a CI sound coding strategy as presented in 

Figure 1. However, the length of the FFT needs to be 

reduced for this purpose. Given the SIR, SAR and SDR 

values, we investigated the effect of reducing the length 

of the FFT on objective performance (Figure 6). Figure 6 

shows that reducing the length of the FFT causes a 

reduction in SDR, SIR and SAR that may impact the 

benefits observed with a long 1024-FFT. 

 

Figure 6: Effect of FFT length on objective measures 

performance. 

4 Conclusion 

In this manuscript we propose a CI sound coding 

strategy that integrates a DRNN to improve speech 

intelligibility in the presence of a competing voice. First 

we demonstrate that a DRNN can significantly improve 

speech intelligibility performance using Vocoder 

simulations. Preliminary tests in CI users also indicate a 

speech intelligibility benefit for the new sound coding 

strategy. Given the objective performance measures we 

show how to reduce the complexity and latency of the 

DRNN so that it can be incorporated into a CI speech 

processor. Additional experiments using DRNNs not 

trained with the same voices used for testing are 

necessary to show whether this technique can be 

generalized for a daily life application. 

ACKNOWLEDGEMENTS 

The authors would like to thank the subjects who have 

participated in the experiments. This work was supported 

by the DFG Cluster of Excellence EXC 1077/1 

Hearing4all. We gratefully acknowledge the support of 

NVIDIA Corporation with the donation of the Tesla K40 

GPU used for this research. 

  

ID Age

Duration

of 

Deafness

Cause

of

Deafness

Implant 

Experience

(in years)

Electrode

type

P1 80 13.42

Sudden

Hearing

Loss 4.5 CI512

P2 67 33.25 Genetic 8 Sonata TI100

P3 35 0 Unknown 5.5 HiRes90k Helix
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