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Abstract

Today, cochlear implants (CIs) are the treatment of choice
in patients with profound hearing loss. However speech intel-
ligibility with these devices is still limited. A factor that de-
termines hearing performance is the processing method used
in CIs. Therefore research is focused on designing different
speech processing methods. The evaluation of these strategies
is subject to variability as it is usually performed with cochlear
implant recipients. Therefore an objective method for the eval-
uation would give more robustness compared to the tests per-
formed with CI patients.

This paper proposes a method to evaluate signal process-
ing strategies for CIs based on a hidden markov model speech
recognizer.

Two signal processing strategies for CIs, the Advanced
Combinational Encoder (ACE) and the Psychoacoustic Ad-
vanced Combinational Encoder (PACE), have been compared in
a phoneme recognition task using the system mentioned above.
Results show that PACE obtained higher recognition scores than
ACE.
Index Terms: cochlear implant, speech recognition, HMM

1. Introduction
Cochlear implants significantly improve the auditory receptive
abilities of people with profound hearing loss [1]. These de-
vices consist of a microphone, a speech processor, a transmit-
ter, a receiver and an electrode array which is positioned inside
the cochlea. The electrode array carries a number of electrode
contacts that can emit small electrical currents to evoke neural
action potentials on the auditory nerve.

Speech processing strategies for cochlear implants deter-
mine the excitation patterns within the cochlea and subse-
quently have a strong influence on speech perception. Therefore
research is focused on designing new advanced speech process-
ing methods. In general, the speech processor decomposes the
audio signal into different frequency bands and delivers a stim-
ulation pattern to the implanted electrode determined by the
speech processing strategy. The two main speech processing
concepts are the CIS (Continuous Interleaved Sampling) and
NofM strategies. NofM strategies such as Advanced Combina-
tional Encoder (ACE) [4], separate speech signals into M sub-
bands and derive envelope information from each band signal.
N bands with the largest amplitude are then selected for stimula-
tion (N out of M) in each time window. CIS could be considered
as a special case of NofM with N=M, meaning that all bans are
being selected for stimulation regardless of their envelope in-
formation.

Based on the general structure of the ACE strategy but in-
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Figure 1:Cochlear Implant Front-End.

corporating a psychoacoustic masking model, a new approach
has been designed in order to select the N bands in NofM strate-
gies. The idea behind that was to neglect information that isin-
audible to normal hearing persons and to concentrate only onto
the signal components that are perceived by the normal hear-
ing auditory system. It was anticipated to achieve improved
speech recognition with this advanced speech coding strategy
compared to he simple NofM type maxima selection of the
ACE strategy. The new strategy was termed Psychoacoustic
Advanced Combinational Encoder (PACE). The PACE strategy
was evaluated in a pilot study conducted with eight cochlearim-
plant recipients. Speech intelligibility tests, comparing the ACE
and the PACE strategy, showed a superior speech performance
for the PACE [4]. However, these results are generally subject
to inter- and intra- subject variability. Results obtainedfrom
an objective method to measure speech intelligibility withboth
strategies would give more robustness to the study mentioned
before.

Automatic speech recognition systems based on neural net-
works and hidden markov models have been used to evaluate
speech processors for cochlear implants [2], [3]. This paper
also proposes a hidden markov model speech recognizer in or-
der to compare the ACE and the PACE strategies. The speech
recognizer uses as input the stimulation patterns obtainedfrom
a cochlear implant processor.

Section 2 presents the cochlear implant front-end. Section
3 outlines the structure of the hidden markov model speech rec-
ognizer . In section 4 the methods for testing both signal pro-
cessing strategies are given. Finally, section 5 shows the results
obtained and section 6 gives some conclusions.

2. The Cochlear Implant Front-End

Figure 1 presents the block diagram of the cochlear implant
front-end. A speech signal is processed using a cochlear im-
plant strategy. The output of this stage are electrical amplitudes.
Afterwards a simple model of current spread has been used to
estimate the stimulation pattern produced in the cochlea. The
following subsections present each stage of the cochlear implant
front-end in more detail.
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Figure 2:ACE strategy block diagram.

2.1. Signal Processing Strategy

The signal processing algorithms implemented are the Ad-
vanced Combination Encoder and the Psychoacoustic Ad-
vanced Combinational.

Both ACE (Figure 2) and PACE (Figure 3) are NofM-
type strategies that can both be used with the Nucleus implant.
In these strategies a digital signal sampled at 16 kHz is sent
through a filterbank. The filterbank is implemented with an FFT
(Fast Fourier Transform). The block update rate of the FFT is
adapted to the rate of stimulation on a channel i.e. the Channel
Stimulation Rate (CSR). The FFT is performed on windowed
input blocks of 128 samples (8 ms at 16 kHz) of the audio sig-
nal using Hann window.

The uniformly-spaced FFT bins are combined by summing
the powers to provide the required number of frequency bands.
The bandwidths of these bands are approximately equal to the
critical bands, where low- frequency bands have higher fre-
quency resolution than high- frequency bands. The envelope
in each spectral banda(z)(z = 1, ..., M) is obtained as fol-
lows. The real part of the jth FFT bin is denoted withx(j), and
the imaginary party(j). The power of the bin is

r
2(j) = x

2(j) + y
2(j), j = 0, ..., L − 1. (1)

The power of the envelope of a filter band z is calculated as
a weighted sum of FFT bin powers

a
2(z) =

L/2
X

j=0

gz(j)r
2(j), z = 1, ..., M, (2)

wheregz(j) are gains. The exact value of these gains can
be obtained from [4].

The envelope of the filter bands z isa(z).
In the ACE “sampling and selection” block, a subset of N

(N < M) filter bank envelopesa(zi) with the largest amplitude
are selected for stimulation.

In the PACE “sampling and selection” block, a
psychoacoustic-masking model is used to select the N
bands. Consequently, the bands selected by this approach
are not necessarily those with largest amplitudes (as is the
case in the ACE strategy) but the ones that are, in terms of
hearing perception, most important to the auditory system of
normal-hearing people. The psychoacoustic masking model
is configured by a so-called spreading function. This function
models the masking effect of each band upon the others.
The spreading function is defined using three parameters, the
attenuation parameterav, the left slopesl and the right slope
rl. In [4], speech tests with CI recipients were performed using
two different spreading functions. These two configurations
were termed PACE1 and PACE2, and they differed in the
steepnes of the mentioned function. The PACE2 used a steeper
function than the PACE2. More information on these two
configurations of PACE can be found in [4].

Finally, the “mapping block” determines the current level
based on the envelope magnitude and the channel character-
istics. This is done by using the Loudness Growth Function
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Figure 3:PACE strategy block diagram.
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Figure 4:Spreading Function.

(LGF), which is a logarithmically-shaped function that maps the
acoustic envelope amplitudea(zi) to an electrical magnitude.

p(zi) =

8

>

<

>

:

log
“

1+ρ
“

a(zi)−s

m−s

””

log(1+ρ)
s ≤ a(zi) ≤ m

0 a(zi) < s
1 a(zi) ≥ m

(3)

The magnitudep(zi) is a fraction in the range 0 to 1 that
represents the proportion of the output range (from the Thresh-
old T to the Comfort levelC). An input at the base-levels is
mapped to an output at Threshold level, and no output is pro-
duced for an input of lower amplitude. The parameterm is the
input level at which the output saturates; inputs at this level or
above result in stimuli at Comfort level. The parameterρ con-
trols the steepness of the LGF [5]

Finally, the channelszi are stimulated with levels:

li = T + (C − T )pi (4)

The set ofli (i = 1..N) form the frame sequence. A frame
is generated at a rate defined by the channel stimulation rate.
This parameter is fixed for each patient and its typical valueis
around 1000 Hz.

2.2. Current Spread Model

A simple model of current spread was used to estimate the elec-
trical excitation along the auditory nerve with a cochlear im-
plant. The current density was modeled with an exponential
decay function inK sections along the cochlea.

Em(k) = e
−|X

elec
(m)−Xsect(k)|

λ , m = 1...M, k = 1...K
(5)

Xsect(k) represents the position in [mm] along the cochlea
for the section k.X(m) is the position along the cochlea for the
electrode m andλ represents the degree of spread of excitation.

The number of sections K was set to 211. The sections were
chosen to be spaced 0.1 Bark in frequency, this resolution was
chosen to obtain the same number of sections as used by other
auditory models known from the literature [10]. By selecting
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d) Envelope Detector PACE
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b) Loudness Growth Function ACE
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e) Loudness Growth Function PACE
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c) Current Spread Model ACE
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f) Current Spread Model PACE
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Figure 5: a) Acoustic Envelope Response with ACE b) Loud-
ness Growth Function Response with ACE. c) Electrical Field
Response with ACE, d) Acoustic Envelope Response with PACE
e) Loudness Growth Function Response with PACE,f) Electrical
Field Response with PACE

the same number of sections in both models, a direct compari-
son in the excitation patterns can be made. The position along
the cochlea associated to each section was obtained by directly
inverting equation 6 given by Greenwood [7] .

The number of electrodesM was set to 20. The position of
each electrodeXelec(m) was approximated by substituting the
center frequencies of the ACE filterbank in equation??.

F = A(10aX
− k), A = 165.4, a = 0.06 (6)

The value ofλ was set to 1 mm, this value agrees with
acoustic experiments comparing a cochlear implant vocoderand
experiments with cochlear implant patients [6].

Finally, the excitation produced by each frame was obtained
by adding the current spread produced by all electrodes stimu-
lated in that frame.

Figure 5 presents the stimulation patterns of a speech token
obtained at the different processing stages using the ACE and
the PACE2 strategies. The token was a vowel ’a’ uttered in
english by a woman.

Figures 5a) and d) present the acoustic envelopes selected
by the ACE and the PACE respectively. It can be observed that
the spectrum obtained with the ACE is concentrated in two areas
coinciding with the two first formants of the token ’a’. These
two areas contain high energy as ACE selects the bands with
largest amplitude. Figures 5 b) and e) present the spectrum ob-
tained after converting the acoustic amplitudes into electrical
amplitudes using the Loudness Growth Function for the ACE
and the PACE. It can be observed that the pattern obtained with
PACE has less components than the one determined by ACE.
This is, because PACE selects more bands that are below the
base level of the LGF function than ACE. Figure 5 c) and f)
present the stimulation pattern obtained with ACE and PACE
after modeling the current spread produced in the cochlea. It
can be seen that with ACE the two formants have been smeared
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Figure 6: Block Diagram of the Automatic Speech Recognizer
using a Cochlear Implant Front-End.

over the frequency. However, with PACE the formants can still
be recognized.

3. Automatic Speech Recognition with a
Cochlear Implant Front-End

Figure 6 presents the basic block diagram of the automatic
speech recognition system using a cochlear implant front-end.
The following subsections explain the speech recognizer and
the interface between the cochlear implant front-end and the
speech recognizer in detail.

3.1. Interfacing to the speech recognizer

As explained in previous sections, feature vectors of dimension
K (K=211) are obtained at a rate determined by CSR. As de-
scribed earlier, a typical value for the CSR is 1000 Hz. There-
fore, the dimensionality of this data was reduced in order to
make it more suitable for speech recognition with a Hidden-
Markov-Model (HMM). For each section, the stimulation pat-
tern was integrated every 10 ms. Afterwards, to further reduce
the number of spectral features, a DCT was applied and the first
12 cepstral coefficients were stored. Finally, the feature vec-
tor was augmented by adding first- and second- order temporal
derivatives. A similar dimensionality reduction was used in [5].

3.2. Hidden Markov Model Speech Recognizer

The recognition system was built with Cambridge’s HTK
Toolkit [9]. The experiments were performed using the TIMIT
core database [8]. This database contains 192 sentences from
24 speakers. 576 sentences were used for training and 192 sen-
tences were used for testing. The test set was not included in
the training. The recognizer used a five-state HMM for each
phoneme. Each state was modeled by a ”Gaussian mixture”.
We did not use any kind of grammar, bi-gram or triphone model.
Recognition of phones was therefore completely based on the
actual feature vectors. Using Mel-frequency cepstral coefficient
(MFCC) features, the system obtained 64.00% on phoneme
recognition rate using the TIMIT core database.

4. Methods
The experiments consisted on comparing ACE and PACE strate-
gies in a phoneme recognition task for different conditions. The
different testing conditions were determined by varying the pa-
rameter N (number of selected bands N from the total number
of filter bank bands M) in both signal processing strategies.All
other parameters of the presented system were kept fixed.

The total number of bands M was set to 20, the CSR was
set to 1000 Hz and the values that define the LGF function were
set toρ=20, s=4/256 and m=150/256. These values, are the
standard values used by most of the users of the Nucleus-24
cochlear implant device. Finally,λ was set to 1 mm.

The PACE strategy was configured using two different
spreading functions termed PACE1 and PACE2 as explained in
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Figure 7:Phoneme Recognition Results.

section 2.1

5. Results
Figure 7 presents the recognition scores obtained by the auto-
matic speech recognizer using ACE, PACE1 and PACE2 respec-
tively.

For N=1 only one band is selected and for this condition
there are no processing differences between ACE and PACE.
Subsequently, the same scores were obtained in this condition.
The same is true for N=20 where all the bands are selected in
both ACE and PACE. Maximum performance is achieved by
the PACE2 strategy, with N=4. Interestingly, PACE stimulating
only 4 channels per cycle achieves better performance than ACE
stimulating 20 channels per cycle.

These results are consistent with speech intelligibility tests
obtained with cochlear implant patients at our center. Patient
trials shown that PACE2 with N=4 performs better than ACE
with N=8 [4].

6. Conclusions
This paper has presented an automatic speech recognizer that
uses stimulation patterns coming from a cochlear implant front-
end. The goal of the system was to obtain an objective measure
to determine which signal processing strategy performs better
in terms of speech intelligibility for cochlear implant patients.
Using such an objective measure it is possible to achieve more
robustness to results obtained from cochlear implant patients
directly.

In a pilot experiment with the TIMIT core database two
NofM signal processing strategies for cochlear implants were
compared for different settings. This experiment has shownthat
the PACE strategy achieves better recognition performancethan
the ACE strategy even with PACE stimulating less bands per
stimulation cycle compared to ACE. The maximum phoneme
recognition score using PACE was 44.18% stimulating only 4
channels per stimulation cycle. The maximum score obtained
by ACE was 43.01% and it was necessary to stimulate 12 chan-
nels per stimulation cycle. This experiment was consistentwith
speech intelligibility results obtained with cochlear implant re-
cipients. As PACE can achieve at least the same results as ACE,
but with significantly lower stimuli per cycle, the new strategy
saves power and can lead to the design of smaller devices with
less batteries.

The speech recognition system proposed is comparable to
existing models of the normal hearing auditory system. Audi-
tory models together with HMM back-ends have shown to ob-

tain at least similar recognition scores to that of mel-frequency-
coefficients (MFCCs) based hidden markov model speech rec-
ognizers. Therefore, it is anticipated that an auditory model
representing the limitations of hearing with cochlear implants
performs worse than the models representing a fully functioning
auditory system. Future work will comprise the comparison of
the above mentioned systems. Furthermore, the repetition of the
experiments in adverse listening conditions and the influence of
the parameters that configure the cochlear implant front-end in
speech recognition will be investigated. It will be also evalu-
ated if these results are consistent with the results obtained from
cochlear implant patients. On our long way to closer mimic the
neural excitation patterns within the cochlea and the ever in-
creasing complexity of speech coding strategies, the approach
of evaluating speech processing algorithms with the help ofau-
ditory models will gain more and more importance in the future.
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