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Abstract

Today, cochlear implants (Cls) are the treatment of choice
in patients with profound hearing loss. However speech-inte
ligibility with these devices is still limited. A factor thale-

termines hearing performance is the processing method used

in Cls. Therefore research is focused on designing difteren
speech processing methods. The evaluation of these sémteg
is subject to variability as it is usually performed with btear
implant recipients. Therefore an objective method for tved-e
uation would give more robustness compared to the tests per-
formed with CI patients.

This paper proposes a method to evaluate signal process-
ing strategies for Cls based on a hidden markov model speech
recognizer.

Two signal processing strategies for Cls, the Advanced
Combinational Encoder (ACE) and the Psychoacoustic Ad-
vanced Combinational Encoder (PACE), have been compared in
a phoneme recognition task using the system mentioned above
Results show that PACE obtained higher recognition scbiaes t
ACE.

Index Terms:. cochlear implant, speech recognition, HMM

1. Introduction

Cochlear implants significantly improve the auditory retep
abilities of people with profound hearing loss [1]. These de
vices consist of a microphone, a speech processor, a transmi
ter, a receiver and an electrode array which is positionsidién
the cochlea. The electrode array carries a number of etitro
contacts that can emit small electrical currents to evokeate
action potentials on the auditory nerve.

Speech processing strategies for cochlear implants deter-
mine the excitation patterns within the cochlea and subse-
quently have a strong influence on speech perception. Tdreref
research is focused on designing new advanced speech proces
ing methods. In general, the speech processor decompases th
audio signal into different frequency bands and deliversna-s
ulation pattern to the implanted electrode determined gy th

speech processing strategy. The two main speech processing

concepts are the CIS (Continuous Interleaved Sampling) and
NofM strategies. NofM strategies such as Advanced Combina-
tional Encoder (ACE) [4], separate speech signals into M sub
bands and derive envelope information from each band signal
N bands with the largest amplitude are then selected fougtim
tion (N out of M) in each time window. CIS could be considered
as a special case of NofM with N=M, meaning that all bans are
being selected for stimulation regardless of their enweliop
formation.

Based on the general structure of the ACE strategy but in-
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Figure 1:Cochlear Implant Front-End.

corporating a psychoacoustic masking model, a new approach
has been designed in order to select the N bands in NofM strate
gies. The idea behind that was to neglect information thiai-is
audible to normal hearing persons and to concentrate oty on
the signal components that are perceived by the normal hear-
ing auditory system. It was anticipated to achieve improved
speech recognition with this advanced speech coding girate
compared to he simple NofM type maxima selection of the
ACE strategy. The new strategy was termed Psychoacoustic
Advanced Combinational Encoder (PACE). The PACE strategy
was evaluated in a pilot study conducted with eight cochitear
plant recipients. Speech intelligibility tests, compgrthe ACE

and the PACE strategy, showed a superior speech performance
for the PACE [4]. However, these results are generally sbje
to inter- and intra- subject variability. Results obtairfeasm

an objective method to measure speech intelligibility vzitith
strategies would give more robustness to the study memtione
before.

Automatic speech recognition systems based on neural net-
works and hidden markov models have been used to evaluate
speech processors for cochlear implants [2], [3]. This pape
also proposes a hidden markov model speech recognizer in or-
der to compare the ACE and the PACE strategies. The speech
recognizer uses as input the stimulation patterns obtdoed
a cochlear implant processor.

Section 2 presents the cochlear implant front-end. Section
3 outlines the structure of the hidden markov model speech re
ognizer . In section 4 the methods for testing both signal pro
cessing strategies are given. Finally, section 5 showsethdts
obtained and section 6 gives some conclusions.

2. The Cochlear Implant Front-End

Figure 1 presents the block diagram of the cochlear implant
front-end. A speech signal is processed using a cochlear im-
plant strategy. The output of this stage are electrical dotas.
Afterwards a simple model of current spread has been used to
estimate the stimulation pattern produced in the cochldee T
following subsections present each stage of the cochlgaairh
front-end in more detail.
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Figure 2:ACE strategy block diagram.
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2.1. Signal Processing Strategy

The signal processing algorithms implemented are the Ad-
vanced Combination Encoder and the Psychoacoustic Ad-
vanced Combinational.

Both ACE (Figure 2) and PACE (Figure 3) are NofM-
type strategies that can both be used with the Nucleus iraplan
In these strategies a digital signhal sampled at 16 kHz is sent
through afilterbank. The filterbank is implemented with aid FF
(Fast Fourier Transform). The block update rate of the FFT is
adapted to the rate of stimulation on a channel i.e. the GHann
Stimulation Rate (CSR). The FFT is performed on windowed
input blocks of 128 samples (8 ms at 16 kHz) of the audio sig-
nal using Hann window.

The uniformly-spaced FFT bins are combined by summing
the powers to provide the required number of frequency bands
The bandwidths of these bands are approximately equal to the
critical bands, where low- frequency bands have higher fre-
quency resolution than high- frequency bands. The envelope
in each spectral band(z)(z = 1,..., M) is obtained as fol-
lows. The real part of the jth FFT bin is denoted witfy), and
the imaginary pary(j). The power of the bin is

r?(j) = 2*() +v*(4),5 = 0,., L= 1. @)

The power of the envelope of a filter band z is calculated as
a weighted sum of FFT bin powers

L/2

a2(z):Zgz(j)r2(j),z:1,...,M, (2)
7=0

whereg. (j) are gains. The exact value of these gains can
be obtained from [4].

The envelope of the filter bands zd$z).

In the ACE “sampling and selection” block, a subset of N
(N < M) filter bank envelopes(z;) with the largest amplitude
are selected for stimulation.

In the PACE “sampling and selection” block, a
psychoacoustic-masking model is used to select the N
bands.
are not necessarily those with largest amplitudes (as is the
case in the ACE strategy) but the ones that are, in terms of
hearing perception, most important to the auditory systém o
normal-hearing people. The psychoacoustic masking model
is configured by a so-called spreading function. This fuorcti
models the masking effect of each band upon the others.
The spreading function is defined using three parametees, th
attenuation parameter,, the left slopes; and the right slope
r;. In [4], speech tests with ClI recipients were performedgisin
two different spreading functions. These two configuration
were termed PACE1 and PACE2, and they differed in the

Consequently, the bands selected by this approach
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Figure 3:PACE strategy block diagram.
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Figure 4:Spreading Function.

(LGF), which is a logarithmically-shaped function that raipe
acoustic envelope amplitudg z;) to an electrical magnitude.

log(1+4p( 2zl =2
og( lo”g((Hp) )) s < a(zi) <m

p(zi) = a(zi) < s ®3)
1 a(zi)) >m
The magnitude(z;) is a fraction in the range 0 to 1 that
represents the proportion of the output range (from the &thre
old T to the Comfort levelC). An input at the base-level is
mapped to an output at Threshold level, and no output is pro-
duced for an input of lower amplitude. The parametds the
input level at which the output saturates; inputs at thigller
above result in stimuli at Comfort level. The parameieron-
trols the steepness of the LGF [5]
Finally, the channels; are stimulated with levels:
li=T+(C—=T)p: (4)
The set of; (i = 1..N) form the frame sequence. A frame
is generated at a rate defined by the channel stimulation rate
This parameter is fixed for each patient and its typical vidue
around 1000 Hz.

2.2. Current Spread M odel

A simple model of current spread was used to estimate the elec
trical excitation along the auditory nerve with a cochlear i
plant. The current density was modeled with an exponential
decay function ink sections along the cochlea.

1 Xetec(m)=Xsect (k)|
=e¢ X
)

B (k) m=1.M,k=1.K
5)

Xsect (k) represents the position in [mm] along the cochlea

steepnes of the mentioned function. The PACE2 used a steeper for the section kX (m) is the position along the cochlea for the

function than the PACE2. More information on these two
configurations of PACE can be found in [4].
Finally, the “mapping block” determines the current level

electrode m and represents the degree of spread of excitation.
The number of sections K was setto 211. The sections were
chosen to be spaced 0.1 Bark in frequency, this resolutian wa

based on the envelope magnitude and the channel character- chosen to obtain the same number of sections as used by other

istics. This is done by using the Loudness Growth Function

auditory models known from the literature [10]. By selegtin
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Figure 6: Block Diagram of the Automatic Speech Recognizer
using a Cochlear Implant Front-End.

over the frequency. However, with PACE the formants cah stil
be recognized.

3. Automatic Speech Recognition with a
Cochlear Implant Front-End
Figure 6 presents the basic block diagram of the automatic
speech recognition system using a cochlear implant frodt-e
The following subsections explain the speech recognizedr an

the interface between the cochlear implant front-end aed th
speech recognizer in detail.

3.1. Interfacing to the speech recognizer

As explained in previous sections, feature vectors of dsiten

Response with ACE, d) Acoustic Envelope Response with PACE K (K=211) are obtained at a rate determined by CSR. As de-

e) Loudness Growth Function Response with PACE,f) Eledtric
Field Response with PACE

the same number of sections in both models, a direct compari-
son in the excitation patterns can be made. The positiorgalon
the cochlea associated to each section was obtained bylylirec
inverting equation 6 given by Greenwood [7] .

The number of electrode® was set to 20. The position of
each electrod& ;.. (m) was approximated by substituting the
center frequencies of the ACE filterbank in equation

F=A10"" —k), A=165.4, a=0.06 (6)

The value of\ was set to 1 mm, this value agrees with
acoustic experiments comparing a cochlear implant vocaar
experiments with cochlear implant patients [6].

Finally, the excitation produced by each frame was obtained
by adding the current spread produced by all electrodesustim

lated in that frame.

scribed earlier, a typical value for the CSR is 1000 Hz. There
fore, the dimensionality of this data was reduced in order to
make it more suitable for speech recognition with a Hidden-
Markov-Model (HMM). For each section, the stimulation pat-
tern was integrated every 10 ms. Afterwards, to further cedu
the number of spectral features, a DCT was applied and the firs
12 cepstral coefficients were stored. Finally, the feat@we v
tor was augmented by adding first- and second- order temporal
derivatives. A similar dimensionality reduction was usegb].

3.2. Hidden Markov Model Speech Recognizer

The recognition system was built with Cambridge’s HTK
Toolkit [9]. The experiments were performed using the TIMIT
core database [8]. This database contains 192 sentences fro
24 speakers. 576 sentences were used for training and 192 sen
tences were used for testing. The test set was not included in
the training. The recognizer used a five-state HMM for each
phoneme. Each state was modeled by a "Gaussian mixture”.
We did not use any kind of grammar, bi-gram or triphone model.
Recognition of phones was therefore completely based on the

Figure 5 presents the stimulation patterns of a speech token actual feature vectors. Using Mel-frequency cepstralfeneht

obtained at the different processing stages using the AGE an
the PACE?2 strategies. The token was a vowel 'a’ uttered in
english by a woman.

Figures 5a) and d) present the acoustic envelopes selected

by the ACE and the PACE respectively. It can be observed that
the spectrum obtained with the ACE is concentrated in twasare
coinciding with the two first formants of the token 'a’. These

(MFCC) features, the system obtained 64700n phoneme
recognition rate using the TIMIT core database.

4. Methods

The experiments consisted on comparing ACE and PACE strate-
gies in a phoneme recognition task for different conditiortse

two areas contain high energy as ACE selects the bands with different testing conditions were determined by varying pia-

largest amplitude. Figures 5 b) and e) present the spectbim o
tained after converting the acoustic amplitudes into eileadt

amplitudes using the Loudness Growth Function for the ACE
and the PACE. It can be observed that the pattern obtainéd wit

rameter N (number of selected bands N from the total number

of filter bank bands M) in both signal processing strategidis.

other parameters of the presented system were kept fixed.
The total number of bands M was set to 20, the CSR was

PACE has less components than the one determined by ACE. setto 1000 Hz and the values that define the LGF function were
This is, because PACE selects more bands that are below the set top=20, s=4/256 and m=150/256. These values, are the
base level of the LGF function than ACE. Figure 5 c) and f)  standard values used by most of the users of the Nucleus-24
present the stimulation pattern obtained with ACE and PACE cochlear implant device. Finally, was setto 1 mm.

after modeling the current spread produced in the cochlea. | The PACE strategy was configured using two different
can be seen that with ACE the two formants have been smeared spreading functions termed PACE1 and PACE?2 as explained in
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Figure 7:Phoneme Recognition Results.

section 2.1

5. Results

Figure 7 presents the recognition scores obtained by tlee aut
matic speech recognizer using ACE, PACE1 and PACE2 respec-
tively.

For N=1 only one band is selected and for this condition
there are no processing differences between ACE and PACE.
Subsequently, the same scores were obtained in this camditi
The same is true for N=20 where all the bands are selected in
both ACE and PACE. Maximum performance is achieved by
the PACE2 strategy, with N=4. Interestingly, PACE stimungt
only 4 channels per cycle achieves better performance tdh A
stimulating 20 channels per cycle.

These results are consistent with speech intelligibikts
obtained with cochlear implant patients at our center. eRéti
trials shown that PACE2 with N=4 performs better than ACE
with N=8 [4].

6. Conclusions

This paper has presented an automatic speech recognizer tha [

uses stimulation patterns coming from a cochlear implamttfr

end. The goal of the system was to obtain an objective measure
to determine which signal processing strategy performgebet

in terms of speech intelligibility for cochlear implant patts.
Using such an objective measure it is possible to achieve mor
robustness to results obtained from cochlear implant pistie
directly.

In a pilot experiment with the TIMIT core database two
NofM signal processing strategies for cochlear implantsewe
compared for different settings. This experiment has shitvan
the PACE strategy achieves better recognition performtrare
the ACE strategy even with PACE stimulating less bands per
stimulation cycle compared to ACE. The maximum phoneme
recognition score using PACE was 447 &timulating only 4
channels per stimulation cycle. The maximum score obtained
by ACE was 43.0% and it was necessary to stimulate 12 chan-
nels per stimulation cycle. This experiment was consistéfit
speech intelligibility results obtained with cochlear iiaomt re-
cipients. As PACE can achieve at least the same results as ACE
but with significantly lower stimuli per cycle, the new stgy
saves power and can lead to the design of smaller devices with
less batteries.

The speech recognition system proposed is comparable to
existing models of the normal hearing auditory system. Audi
tory models together with HMM back-ends have shown to ob-

tain at least similar recognition scores to that of mel-fiexgy-
coefficients (MFCCs) based hidden markov model speech rec-
ognizers. Therefore, it is anticipated that an auditory ehod
representing the limitations of hearing with cochlear iami
performs worse than the models representing a fully funaimp
auditory system. Future work will comprise the comparisbn o
the above mentioned systems. Furthermore, the repetitibe o
experiments in adverse listening conditions and the inflaeri
the parameters that configure the cochlear implant frodtien
speech recognition will be investigated. It will be alsolava
ated if these results are consistent with the results addiom
cochlear implant patients. On our long way to closer mimé th
neural excitation patterns within the cochlea and the ever i
creasing complexity of speech coding strategies, the appro
of evaluating speech processing algorithms with the heluef
ditory models will gain more and more importance in the fatur
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